

TEST REPORT

EN 14351-1:2006 + A1:2010

Windows and doors – Product standard, performance characteristics- Part 1: Windows and external pedestrian doorsets without resistance to fire and/or smoke leakage characteristics

Prepared by (name and signature)...: Mike Gu

Approved by(name and signature)...: Harrison Li

Approved by (name and signature)..: Fred Bao

Date of issue...... April 15, 2013

Contents Total test report 19 pages including:

Report text: 6 pages

Appendix A for product drawings: 2 pages

Appendix B for information of representative sample door: 1 page

Mike hu Harrison Ined

Appendix C for test data summary: 10 pages

Testing Laboratory name Intertek Testing Services Building Products

Address...... Building T52-8, No.1201 Gui Qiao Road, Jinqiao Development

Area, Pudong District, Shanghai, China

Testing location Same as above

Applicant's name Enterdoor AB ubv

Address...... Ambjornsvagen 14 Kungsater Sweden

Test specification:

Standard EN 14351-1: 2006+A1:2010 Clauses 4.2, 4.5, 4.6, 4.12 and 4.14.

Test item description Entry Door

Trade Mark Enterdoor

Model and/or type reference..... EDAB-001

Manufacturer Qingdao Liangmu Co., Ltd.

Page 2 of 19 Report No.: 130318003SHJ-BP-1

Copy of marking plate and summary of test results (information/comments):

Enterdoor AB ubv

Ambjornsvagen 14 Kungsater Sweden

EN 14351-1: 2006+A1:2010

Entry Door

Type: EDAB-001

Characteristics

Resistance to wind load — Test pressure: Class 1
Resistance to wind load — Frame deflection: Class C

Watertightness: Non-shielded (A): Class 2A

Height and width: 2078 mm, 990 mm

Dangerous substance: Compliance declared by

manufacturer

Thermal transmittance: 1.7 W/(m2.K)

Air permeability: Class 4

Note:

- a) If the CE marking is reduced or enlarged the proportions given in the above graduated drawing must be respected.
- b) The various components of the CE marking must have substantially the same vertical dimension, which may not be less than 5 mm
- c) CE marking and label shall be affixed visibly, legibly and indelibly.

Summary of testing:

The submitted samples were tested in accordance with specified standards, and listed the result accordingly, refer to text for detail.

Page 3 of 19 Report No.: 130318003SHJ-BP-1

Test item particulars

Possible test case verdicts

- Test case does not apply to the test object...... N/A

- Test object does meet the requirement P (Pass)

- Test object does not meet the requirement F (Fail)

Testing

Date of receipt of test item...... March 22, 2013

Date (s) of performance of tests..... From March 25, 2013 to March 29, 2013

General remarks:

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Throughout this report a comma (point) is used as the decimal separator.

When determining the test result, measurement uncertainty has been considered.

General product information:

The frame dimensions of representative sample: 990 mm wide x 2078 mm high.

The door leaf dimensions of representative sample: 908 mm wide x 2022 mm high.

The representative sample door leaf thickness: 60 mm.

The drawings of the representative sample door can be referenced in Appendix A.

The basic information of the representative sample door can be referenced to Table 1 in Appendix B.

The sample ID Number is IASQSH121129001.001.

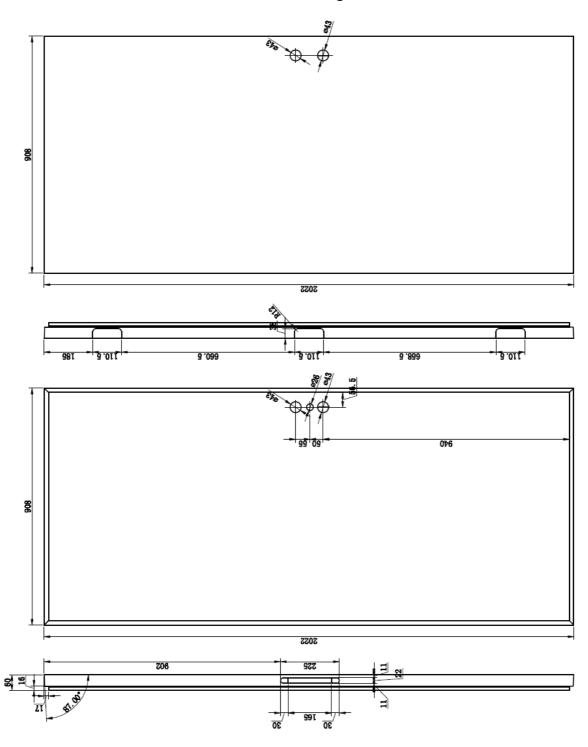
Page 4 of 19 Report No.: 130318003SHJ-BP-1

Performance test					
Clause	Requirement - Test	Result - Remark	Verdict		
4.1	General				
	The performance characteristics for windows and and expressed in accordance with 4.2 to 4.23.	external pedestrian doorsets shall be de	etermined		
4.2	Resistance to wind load	Test pressures for Class 1: P1: 400 Pa, P2: 200 Pa, P3: 600 Pa Relative frontal deflection: Class C After repeated pressure test and safety test, no significant damage happened, and the sample door was still operable. The test specimen remained closed			
	Tests on windows and external pedestrian doorsets shall be carried out in accordance with EN 12211. Classification according to EN 12210.	and P2 did not exceed the upper	Р		
		Conclusion: Final classification C1 The data of resistance to wind load can be referenced in Appendix C.			
4.3	Resistance to snow and permanent load.	Not claimed	N/A		
4.4	Fire characteristics	Not claimed	N/A		
4.5	Watertightness A watertightness test shall be carried out in accordance with EN 1027, Method 1A. Classification according to EN 12208.	Non-shielded (A): Class 2A Water penetration: When water sprayed for 3minutes and 28 seconds at 100 Pa, the water penetration started at the bottom joint between the door leaf and threshold at the middle of the threshold.	Р		
		The door drawing of watertightness can be referenced in Appendix C.			

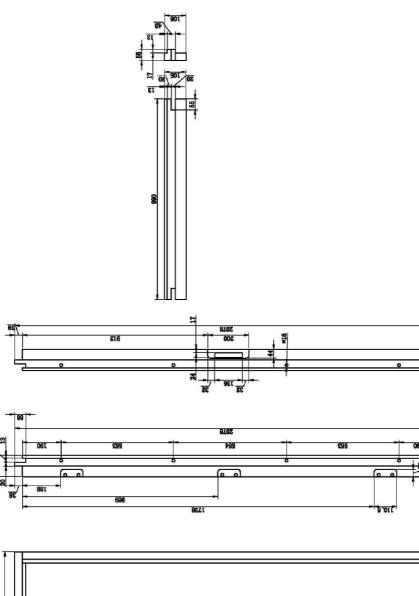
Page 5 of 19 Report No.: 130318003SHJ-BP-1

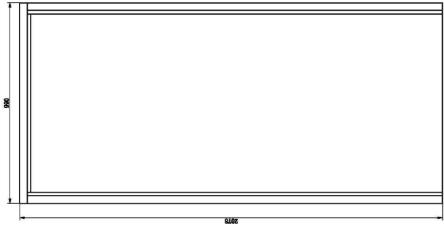
Performance test						
Clause	Requirement - Test	Result - Remark	Verdict			
4.6	Dangerous substance In so far as the state of the art permits, the manufacturer shall establish those materials in the product which are liable to emission or migration during normal intended use and for which emission or migration into the environment is potentially dangerous to hygiene, health or the environment.	(EC) No. 1907/2006 of the European Parliament and the Council as amended.	Р			
4.7	Impact resistance	Not claimed	N/A			
4.8	Load bearing capacity of safety devices	Not claimed	N/A			
4.9	Height and width of doorsets and French windows	Not claimed	N/A			
4.10	Ability to release	Not claimed	N/A			
4.11	Acoustic performance	Not claimed	N/A			
4.12	The test shall be carried out in accordance with EN ISO 12567-1:2010. The thermal transmittance test, U, of the specimen is measured by means of guarded hot-box method in accordance with ISO 8990:1994. Steady-state measurement duration of the specimen is 12 hours.	$\Delta Um = \pm 0.113 \text{ W}/(\text{m}^2 \cdot \text{K})$	N/A			
4.13	Radiation properties	Not claimed	N/A			
4.14	Air permeability – before and after wind load Two air permeability tests shall be carried out in accordance with EN 1026, one with positive test pressures and one with negative test pressures. Classification according to EN 12207.	Length of opening joint: 5.860 m Overall area: 2.507 m². Final classification of air permeability (before wind load): Class 4. The data of air permeability can be referenced from Table 2 to Table 5 and Chart 1 in Appendix C.	Р			
4.15	Durability	Not claimed	N/A			
4.16	Operating force	Not claimed	N/A			

Page 6 of 19 Report No.: 130318003SHJ-BP-1


Performance test					
Clause	Requirement - Test	Result - Remark	Verdict		
			-		
4.17	Mechanical strength	Not claimed	N/A		
4.18	Ventilation	Not claimed	N/A		
4.19	Bullet resistance	Not claimed	N/A		
4.20	Explosion resistance	Not claimed	N/A		
4.21	Resistance to repeated opening and closing	Not claimed	N/A		
4.22	Behavior between different climates	Not claimed	N/A		
4.23	Burglar resistance	Not claimed	N/A		
4.24	Special requirement	Not claimed	N/A		

Page 7 of 19 Report No.: 130318003SHJ-BP-1


Appendix A


Product Drawings

Page 8 of 19 Report No.: 130318003SHJ-BP-1

Page 9 of 19 Report No.: 130318003SHJ-BP-1

Appendix B

Information of Representative Sample Door

1 Manufacturer: Qingdao Liangmu Co., Ltd.							
2 Window (door) system	n name / construction type (window, door, casen	nent door):					
Entry Door, Right Outwards Type/Model: EDAB - 001							
3 Specification of components and their manufacturing plans; fill in material and the manufacturer's marking							
- main profiles manufacturer, B x H: 000 x 2078 mm marking frame, sample (frame) dimensions marking casement (leaf), conditions b x h: 000 x 2078 mm							
supplier:	990 x 2078 mm 908 x 2022 mm						
Qingdao Liangmu Co., Ltd.							
- other profiles/reinforcement	marking, false mullion, mullions and transom weather mouldings (casement water bars)	s, glazing bars, threshold profiles, casement					
manufacturer,	Door Leaf: 60mm thick made of Solid Oak and	Pine with,					
supplier:	Surface: Aluminum composited panel and Cor	e: Oxide Magnesium magnesium					
	Threshold: Solid Oak						
- opening joint sealing (preformed gaskets, weather stripping)	marking interior (internal) preformed gasket, design in the corners* Weather Strip(seal) 10mm thickness	marking central preformed gasket, design in the corners*					
manufacturer,	marking exterior (external) preformed	marking threshold preformed gasket (wiping					
supplier:	gasket, design in the corners*N/A	on the leaf)					
		N/A					
- sealing of glazing manufacturer, supplier:	marking external glazing, design in the corners* N/A	marking glazing bead and preformed gasket N/A					
Insulating glass manufacturer,	marking and composition of the glazing and i	nfills					
supplier:	IVA						
оприст.							
4 Draining and decompr	L ression of casement (glazing groove (rebate): (e	g at the bottom of 3 openings (5x30 mm)					
	(5x28 mm) with cover output profile; top externa						
same length of 50 mm).							
N/A							
5 Draining and decompr	ression of frame (opening joint):						
	ings) (marking and manufacturer):						
	ASSA Abloy Material: Iron						
Exit devices (bolts) type (right, left casement, others): number of perimeter points, operating way, auxiliary thrusts,							
special points							
N/A Hinges (right, left casement, other): sort (turn, tilt and turn)							
3 sets, right, turn, suppliers: ASSA Abloy Material: Steel							
	corners: continuously bent, slit (notched), cut ar	nd glued in corners, welded, cemented					
N/A							

Page 10 of 19 Report No.: 130318003SHJ-BP-1

Appendix C

Test Data Summary

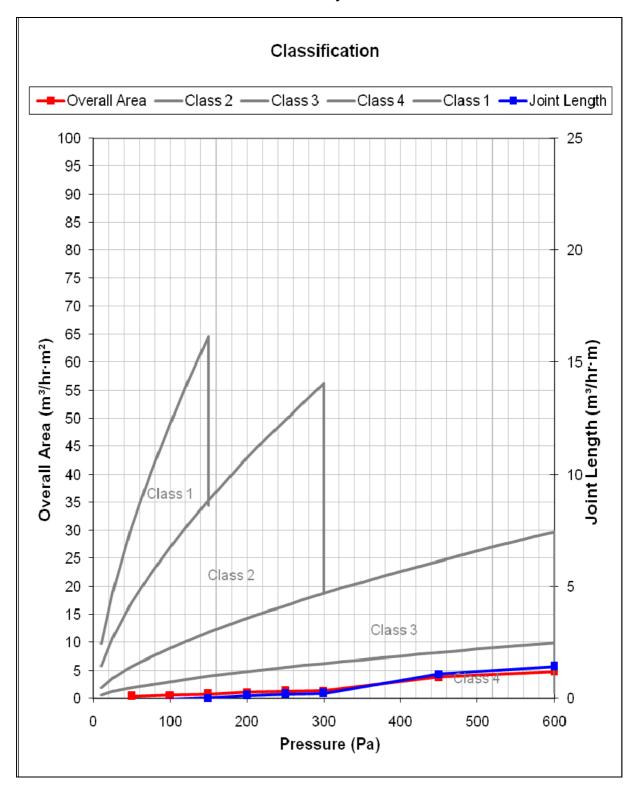
Windows and doors – Air permeability – Test method EN 1026 – before wind load • Length of opening joints: 5.860 m; 1.

- Overall area: 2.057 m².

Table 2

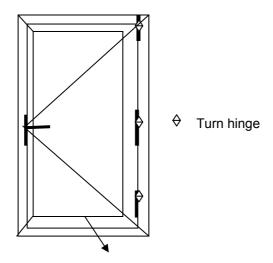
			1 45						
Air	Test pressure step (Pa)	50	100	150	200	250	300	450	600
permeability	Air permeability		100						
at positive pressure	absolute (m³/h)	0.51	1.21	1.41	2.12	2.22	2.42	3.33	4.95
	related to joints length (m³/hm)	0.09	0.21	0.24	0.36	0.38	0.41	0.57	0.84
	related to overall area (m³/hm²)	0.25	0.59	0.69	1.03	1.08	1.18	1.62	2.41
			Tab	le 3					
Air	Test pressure step (Pa)	50	100	150	200	250	300	450	600
permeability	Air permeability								
at negative pressure	absolute (m³/h)	0.91	1.01	1.72	2.22	2.93	3.03	12.33	14.75
	related to joints length (m³/hm)	0.16	0.17	0.29	0.38	0.50	0.52	2.10	2.52
	related to overall area (m³/hm²)	0.44	0.49	0.83	1.08	1.42	1.47	5.99	7.17

Table 4


Average air permeability	Test pressure step (Pa) Air permeability	50	100	150	200	250	300	450	600
	absolute (m³/h)	0.71	1.11	1.57	2.17	2.58	2.73	7.83	9.85
	related to joints length (m³/hm)	0.12	0.19	0.27	0.37	0.44	0.47	1.34	1.68
	related to overall area (m³/hm²)	0.34	0.54	0.76	1.06	1.25	1.33	3.81	4.79

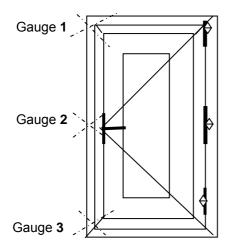
Reference air permeability at 100 Pa related to joints length	$Q_{100} = 0$	0.19 m ³ /hm
Reference air permeability at 100 Pa related to overall area	$Q_{100} = 0$	0.54 m ³ /hm ²
Classification related to joints length (with regard to pressure dependence of air permeability) according to EN 12207		
Classification related to overall area (with regard to pressure dependence of air permeability) according to EN 12207	Class:	4
Final classification of the test specimen according to EN 12207	Class:	4

Page 11 of 19 Report No.: 130318003SHJ-BP-1


Chart 1 - Air Permeability before Wind load

Page 12 of 19 Report No.: 130318003SHJ-BP-1

2. <u>Windows and doors – Watertightness – Test method EN 1027</u> Door drawing:


Water penetration: When water sprayed for 3minutes and 28 seconds at 100 Pa, the water penetration started at the bottom joint between the door leaf and threshold at the middle of the threshold.

Test result:

 $P_{max} = 50 Pa$

3. Windows and doors -Resistance to wind load - Test method EN 12211

3.1. Deflection test

(1, 2, 3 are location of gauges)

Frame member length L = 2020 mm

Page 13 of 19 Report No.: 130318003SHJ-BP-1

Table 6: Deflection test P1 = 400Pa (Class 1)

Gauge No.	Frontal disp	Frontal displacement (deflection) values (mm)						
	Positive pressure +P1	Zero pressure Po	Frontal deflection F _p (mm)	Relative frontal deflection F _{rp} = F _p /L	Negative pressure -P1	Zero pressure Po	Frontal deflection F _p (mm)	Relative frontal deflection F _{rp} = F _p /L
1 top	3.2	0.1			1.1	0.1		
2 middle	3.2	0.0	0.20	1/10100	1.2	0.2	0.15	1/13500
3 bottom	3.0	0.1]		1.0	0.3]	

3.2. Repeated pressure test

50 cycles of negative and positive pressure P2 = $0.5 \times P1 = 200 Pa$

Test Result:

No significant damage happened, and the sample door was still operable.

3.3. Windows and doors - Air permeability - Test method EN 1026 - after wind load

- Length of opening joints 5.860 m
- Overall area: 2.057 m²

			Tab	le 7					
Air permeability	Test pressure step (Pa) Air permeability	50	100	150	200	250	300	450	600
at positive pressure	absolute (m³/h)	0.30	0.91	1.11	1.62	1.82	2.22	3.23	5.56
	related to joints length (m³/hm)	0.05	0.16	0.19	0.28	0.31	0.38	0.55	0.95
	related to overall area (m³/hm²)	0.15	0.44	0.54	0.79	0.88	1.08	1.57	2.70
			Tab	le 8					
Air	Test pressure step (Pa)	50	100	150	200	250	300	450	600
permeability	Air permeability								
at negative pressure	absolute (m³/h)	0.51	0.81	1.31	1.52	2.53	2.73	13.34	19.90
	related to joints length (m³/hm)	0.09	0.14	0.22	0.26	0.43	0.47	2.28	3.40
	related to overall area (m³/hm²)	0.25	0.39	0.64	0.74	1.23	1.33	6.48	9.67
			Tab	le 9					
Average air permeability	Test pressure step (Pa) Air permeability	50	100	150	200	250	300	450	600
	absolute (m³/h)	0.40	0.86	1.21	1.57	2.17	2.48	8.28	12.73
	related to joints length (m³/hm)	0.07	0.15	0.21	0.27	0.37	0.42	1.41	2.17
	related to overall area (m ³ /hm ²)	0.20	0.42	0.59	0.76	1.06	1.20	4.03	6.19

Page 14 of 19 Report No.: 130318003SHJ-BP-1

Reference air permeability at100 Pa related to joints length	$Q100 = 0.15 \text{ m}^3/\text{hm}$
Reference air permeability at100 Pa related to overall area	$Q100 = 0.42 \text{ m}^3/\text{hm}^2$
The requirement for maximum air permeability (120% of upper limit value) at 100 Pa for the given class – Class 4 (after wind load) related to joints length	0.90 m ³ /hm
The requirement for maximum air permeability (120% of upper limit value) at 100 Pa for the given class – Class 4 (after wind load) related to overall area	3.60 m ³ /hm

Page 15 of 19 Report No.: 130318003SHJ-BP-1

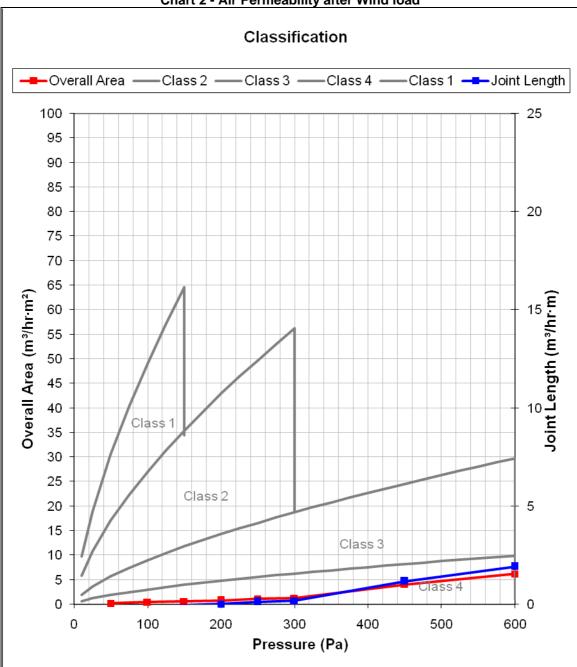


Chart 2 - Air Permeability after Wind load

3.4. Safety test

1 cycle including negative and positive test pressure P3 = 1.5 × P1 = 600 Pa

Test results:

The test specimen remained closed, without any visible damage and failure or detachment any parts of the test specimen. The operation of the moving parts was done without any difficulties.

Page 16 of 19 Report No.: 130318003SHJ-BP-1

4. Thermal Transmittance Test – Test method EN ISO 12567-1

4.1. Diagrams of calibration measurements

Chart 3 - Thermal resistance of the surround panel

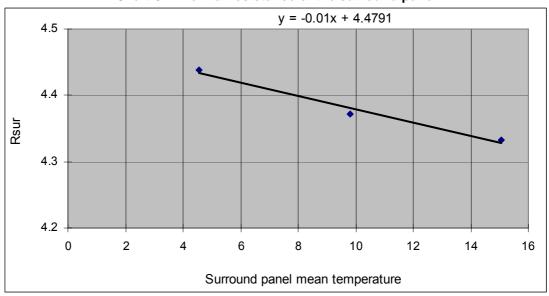


Chart 4 - Total surface resistance

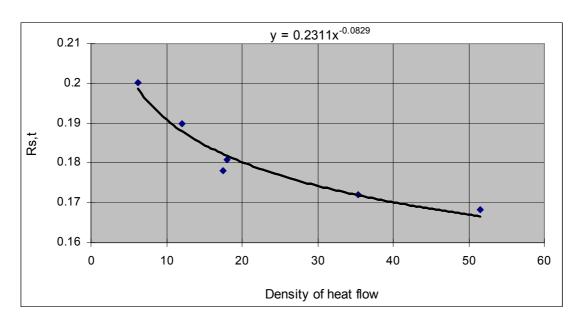


Chart 5 - Convective faction for warm side

Page 17 of 19 Report No.: 130318003SHJ-BP-1

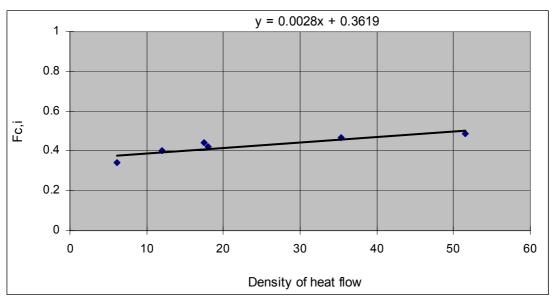
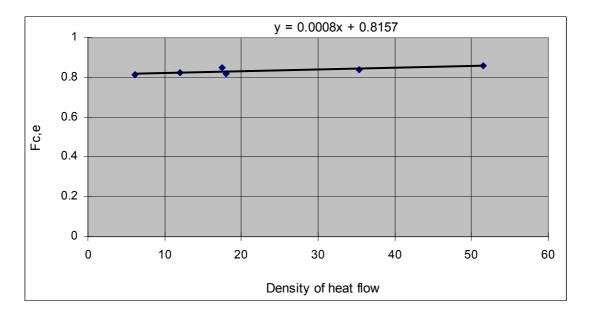



Chart 6 - Convection fraction for cold side

Page 18 of 19 Report No.: 130318003SHJ-BP-1

4.2. Measurements of Test Specimen

Table 11 - Door data

	Data element	Value	
W	frame width	m	0.105
d _{sur}	surround panel thickness	m	0.150
A_{sp}	area of door	m^2	2.05722
A _{sur}	area of surround panel	m^2	4.54278
L	perimeter length	m	6.136

Table 12 - Door measurement results

	Data element	Value	
Cold	I temperature (measured)		
$ heta_{ce}$	(air)	${\mathbb C}$	-0.13
$ heta_{se,b}$	(baffle)	$^{\circ}\! \mathbb{C}$	-0.09
$ heta_{se,p}$	(reveal)	$^{\circ}$ C	0.13
$ heta_{se,sur}$	(surround panel)	$^{\circ}$	0.2
Warm te	mperature (measured)		
$ heta_{ci}$	(air)	${\mathbb C}$	19.18
$ heta_{si,b}$	(baffle)	${\mathbb C}$	18.42
$ heta_{ extstyle extstyle si, extstyle ex$	(surround panel)	${}^{\circ}\!$	18.0
Φ_{in}	(input power in hot box)	W	83.23
Vi	(air flow warm, down)	m/s	0.07
V _e	(air flow cold, up)	m/s	2.97

Table 13 - Calculation of the thermal transmittance of the door

	Data element		Value
$ heta_{me,sur}$	(mean temp. of surround panel)	$^{\circ}$	9.10
R _{sur}	(surround panel resistance)	m²·K/W	4.388
λ_{sur}	(conductivity of surround panel)	W/(m·K)	0.034
ψ_{edge}	for w = 105 mm/d = 45 mm	W/(m·K)	0.00355
$\Delta heta_{s,sur}$	(temp. difference of surround panel)	K	17.30
$\Delta heta_c$	(air temp. difference)	K	19.31
Φ_{in}	(input power in hot box)	W	83.23
$oldsymbol{\phi}_{ extstyle sur}$	(surround panel heat flow)	W	17.91
$oldsymbol{\phi}_{ ext{edge}}$	(edge zone heat flow)	W	0.42
q_{sp}	(heat flow density of specimen)	W/m ²	31.55
F _{ci}	(convective fraction - warm)	-	0.450

Page 19 of 19 Report No.: 130318003SHJ-BP-1

F _{ce}	(convective fraction - cold)	<u>-</u>	0.841
$R_{s,t}$	(total surface resistance)	m ² ·K/W	0.174
$ heta_{ri}$	(radiant temp warm)	${\mathbb C}$	18.42
$ heta_{re}$	(radiant temp cold)	${\mathbb C}$	-0.09
$ heta_{ni}$	(environmental temp hot)	$^{\circ}\! \mathbb{C}$	18.76
$ heta_{ne}$	(environmental temp cold)	${\mathbb C}$	-0.12
$\Delta \theta_n$	(environment temp. difference)	K	18.88
U _m	(measured)	W/(m ² ·K)	1.671
ΔU_m	(uncertainty of the measurement)	W/(m ² ·K)	±0.113
R _{(s,t),st}		(m ² ·K)/W	0.17
U _{st}	(standardized)	W/(m ² ·K)	1.681
U_D	(door U-value)	W/(m ² ·K)	1.681